一、初识MQ
1. 同步和异步通讯
微服务间通讯有同步和异步两种方式:
1、同步通讯:就像打电话,需要实时响应;
2、异步通讯:就像发邮件,不需要马上回复。
两种方式各有优劣,打电话可以立即得到响应,但是你却不能跟多个人同时通话。发送邮件可以同时与多个人收发邮件,但是往往响应会有延迟。
同步通讯
我们之前学习的Feign调用就属于同步方式,虽然调用可以实时得到结果,但存在下面的问题:
同步调用的优点:- 时效性较强
- 可以立即得到结果
同步调用的问题:
- 耦合度高
- 性能和吞吐能力下降
- 有额外的资源消耗
- 有级联失败问题
异步通讯:常见实现是事件驱动模式
异步调用则可以避免上述问题:我们以购买商品为例,用户支付后需要调用订单服务完成订单状态修改,调用物流服务,从仓库分配响应的库存并准备发货。
在事件模式中,支付服务是事件发布者(publisher),在支付完成后只需要发布一个支付成功的事件(event),事件中带上订单id。订单服务和物流服务是事件订阅者(Consumer),订阅支付成功的事件,监听到事件后完成自己业务即可。为了解除事件发布者与订阅者之间的耦合,两者并不是直接通信,而是有一个中间人(Broker)。发布者发布事件到Broker,不关心谁来订阅事件。订阅者从Broker订阅事件,不关心谁发来的消息。
Broker 是一个像数据总线一样的东西,所有的服务要接收数据和发送数据都发到这个总线上,这个总线就像协议一样,让服务间的通讯变得标准和可控。好处:
- 吞吐量提升:无需等待订阅者处理完成,响应更快速
- 故障隔离:服务没有直接调用,不存在级联失败问题
- 调用间没有阻塞,不会造成无效的资源占用
- 耦合度极低,每个服务都可以灵活插拔,可替换
- 流量削峰:不管发布事件的流量波动多大,都由Broker接收,订阅者可以按照自己的速度去处理事件
缺点:
- 架构复杂了,业务没有明显的流程线,不好管理;
- 需要依赖于Broker的可靠、安全、性能
好在现在开源软件或云平台上 Broker 的软件是非常成熟的,比较常见的一种就是我们今天要学习的MQ技术。
2. 技术对比
MQ,中文是消息队列(MessageQueue),字面来看就是存放消息的队列。也就是事件驱动架构中的Broker。
比较常见的MQ实现:ActiveMQ,RabbitMQ,RocketMQ,Kafka。几种常见MQ的对比:
RabbitMQ | ActiveMQ | RocketMQ | Kafka | |
---|---|---|---|---|
公司/社区 | Rabbit | Apache | 阿里 | Apache |
开发语言 | Erlang | Java | Java | Scala&Java |
协议支持 | AMQP,XMPP,SMTP,STOMP | OpenWire,STOMP,REST,XMPP,AMQP | 自定义协议 | 自定义协议 |
可用性 | 高 | 一般 | 高 | 高 |
单机吞吐量 | 一般 | 差 | 高 | 非常高 |
消息延迟 | 微秒级 | 毫秒级 | 毫秒级 | 毫秒以内 |
消息可靠性 | 高 | 一般 | 高 | 一般 |
追求可用性:Kafka、 RocketMQ 、RabbitMQ
追求可靠性:RabbitMQ、RocketMQ
追求吞吐能力:RocketMQ、Kafka
追求消息低延迟:RabbitMQ、Kafka
二、快速入门
1. 安装RabbitMQ
MQ的基本结构:
RabbitMQ中的一些角色:
- publisher:生产者
- consumer:消费者
- exchange:交换机,负责消息路由
- queue:队列,存储消息
- virtualHost:虚拟主机,隔离不同租户的exchange、queue、消息的隔离
2. RabbitMQ消息模型
3. 导入Demo工程
包括三部分:
- mq-demo:父工程,管理项目依赖
- publisher:消息的发送者
- consumer:消息的消费者
4. 入门案例
简单队列模式的模型图:
官方的HelloWorld是基于最基础的消息队列模型来实现的,只包括三个角色:
- publisher:消息发布者,将消息发送到队列queue
- queue:消息队列,负责接受并缓存消息
- consumer:订阅队列,处理队列中的消息
- publisher实现
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31public class PublisherTest {
public void testSendMessage() throws IOException, TimeoutException {
// 1.建立连接
ConnectionFactory factory = new ConnectionFactory();
// 1.1.设置连接参数,分别是:主机名(改成自己的ip)、端口号、vhost、用户名、密码
factory.setHost("192.168.150.101");
factory.setPort(5672);
factory.setVirtualHost("/");
factory.setUsername("itcast");
factory.setPassword("123321");
// 1.2.建立连接
Connection connection = factory.newConnection();
// 2.创建通道Channel
Channel channel = connection.createChannel();
// 3.创建队列
String queueName = "simple.queue";
channel.queueDeclare(queueName, false, false, false, null);
// 4.发送消息
String message = "hello, rabbitmq!";
channel.basicPublish("", queueName, null, message.getBytes());
System.out.println("发送消息成功:【" + message + "】");
// 5.关闭通道和连接
channel.close();
connection.close();
}
} - consumer实现消息被消费后,就消失(阅后即焚)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33public class ConsumerTest {
public static void main(String[] args) throws IOException, TimeoutException {
// 1.建立连接
ConnectionFactory factory = new ConnectionFactory();
// 1.1.设置连接参数,分别是:主机名、端口号、vhost、用户名、密码
factory.setHost("192.168.150.101");
factory.setPort(5672);
factory.setVirtualHost("/");
factory.setUsername("itcast");
factory.setPassword("123321");
// 1.2.建立连接
Connection connection = factory.newConnection();
// 2.创建通道Channel
Channel channel = connection.createChannel();
// 3.创建队列
String queueName = "simple.queue";
channel.queueDeclare(queueName, false, false, false, null);
// 4.订阅消息
channel.basicConsume(queueName, true, new DefaultConsumer(channel){
public void handleDelivery(String consumerTag, Envelope envelope,
AMQP.BasicProperties properties, byte[] body) throws IOException {
// 5.处理消息
String message = new String(body);
System.out.println("接收到消息:【" + message + "】");
}
});
System.out.println("等待接收消息。。。。");
}
}
三、SpringAMQP
SpringAMQP 是基于 RabbitMQ 封装的一套模板,并且还利用 SpringBoot 对其实现了自动装配,使用起来非常方便。
SpringAMQP提供了三个功能:
- 自动声明队列、交换机及其绑定关系
- 基于注解的监听器模式,异步接收消息
- 封装了RabbitTemplate工具,用于发送消息
1. Basic Queue 简单队列模型
在父工程mq-demo中引入依赖
1 | <!--AMQP依赖,包含RabbitMQ--> |
- 消息发送
首先配置MQ地址,在publisher服务的application.yml中添加配置:然后在publisher服务中编写测试类SpringAmqpTest,并利用RabbitTemplate实现消息发送:1
2
3
4
5
6
7spring:
rabbitmq:
host: 192.168.150.101 # 主机名
port: 5672 # 端口
virtual-host: / # 虚拟主机
username: itcast # 用户名
password: 123321 # 密码1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
public class SpringAmqpTest {
private RabbitTemplate rabbitTemplate;
public void testSimpleQueue() {
// 队列名称
String queueName = "simple.queue";
// 消息
String message = "hello, spring amqp!";
// 发送消息
rabbitTemplate.convertAndSend(queueName, message);
}
} - 消息接收
首先配置MQ地址,在consumer服务的application.yml中添加配置:然后在consumer服务的1
2
3
4
5
6
7spring:
rabbitmq:
host: 192.168.150.101 # 主机名
port: 5672 # 端口
virtual-host: / # 虚拟主机
username: itcast # 用户名
password: 123321 # 密码cn.itcast.mq.listener
包中新建一个类SpringRabbitListener,代码如下:1
2
3
4
5
6
7
public class SpringRabbitListener {
public void listenSimpleQueueMessage(String msg) throws InterruptedException {
System.out.println("spring 消费者接收到消息:【" + msg + "】");
}
}
2. WorkQueue
Work queues,也被称为(Task queues),任务模型。简单来说就是让多个消费者绑定到一个队列,共同消费队列中的消息。
当消息处理比较耗时的时候,可能生产消息的速度会远远大于消息的消费速度。长此以往,消息就会堆积越来越多,无法及时处理。此时就可以使用 work 模型,多个消费者共同处理消息处理,速度就能大大提高了。
- 消息发送:在publisher服务中的SpringAmqpTest类中添加一个测试方法:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16/**
* workQueue
* 向队列中不停发送消息,模拟消息堆积。
*/
public void testWorkQueue() throws InterruptedException {
// 队列名称
String queueName = "simple.queue";
// 消息
String message = "hello, message_";
for (int i = 0; i < 50; i++) {
// 发送消息
rabbitTemplate.convertAndSend(queueName, message + i);
Thread.sleep(20);
}
} - 消息接收:要模拟多个消费者绑定同一个队列,我们在consumer服务的SpringRabbitListener中添加2个新的方法:
1
2
3
4
5
6
7
8
9
10
public void listenWorkQueue1(String msg) throws InterruptedException {
System.out.println("消费者1接收到消息:【" + msg + "】" + LocalTime.now());
Thread.sleep(20);``
}
public void listenWorkQueue2(String msg) throws InterruptedException {
System.err.println("消费者2........接收到消息:【" + msg + "】" + LocalTime.now());
Thread.sleep(200);
} - 测试:启动ConsumerApplication后,在执行publisher服务中刚刚编写的发送测试方法testWorkQueue。
可以看到消费者1很快完成了自己的25条消息。消费者2却在缓慢的处理自己的25条消息。也就是说消息是平均分配给每个消费者,并没有考虑到消费者的处理能力。这样显然是有问题的。
在spring中有一个简单的配置,可以解决这个问题。我们修改consumer服务的application.yml文件,添加配置:1
2
3
4
5spring:
rabbitmq:
listener:
simple:
prefetch: 1 # 每次只能获取一条消息,处理完成才能获取下一个消息
3. 发布/订阅
发布订阅的模型如图:
可以看到,在订阅模型中,多了一个exchange角色,而且过程略有变化:
- Publisher:生产者,也就是要发送消息的程序,但是不再发送到队列中,而是发给X(交换机)
- Exchange:交换机,图中的X。一方面,接收生产者发送的消息。另一方面,知道如何处理消息,例如递交给某个特别队列、递交给所有队列、或是将消息丢弃。到底如何操作,取决于Exchange的类型。Exchange有以下3种类型:
- Fanout:广播,将消息交给所有绑定到交换机的队列
- Direct:定向,把消息交给符合指定routing key 的队列
- Topic:通配符,把消息交给符合routing pattern(路由模式) 的队列
- Consumer:消费者,与以前一样,订阅队列,没有变化
- Queue:消息队列也与以前一样,接收消息、缓存消息。
Exchange(交换机)只负责转发消息,不具备存储消息的能力,因此如果没有任何队列与Exchange绑定,或者没有符合路由规则的队列,那么消息会丢失!
这样,实现了一个消息发送给多个消费者。
4. Fanout
在广播模式下,消息发送流程是这样的:
- 1) 可以有多个队列
- 2) 每个队列都要绑定到Exchange(交换机)
- 3) 生产者发送的消息,只能发送到交换机,交换机来决定要发给哪个队列,生产者无法决定
- 4) 交换机把消息发送给绑定过的所有队列
- 5) 订阅队列的消费者都能拿到消息
我们的计划是这样的:
- 创建一个交换机 itcast.fanout,类型是Fanout
- 创建两个队列fanout.queue1和fanout.queue2,绑定到交换机itcast.fanout
- 声明队列和交换机
Spring提供了一个接口Exchange,来表示所有不同类型的交换机:1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24// 在consumer中创建一个类,声明队列和交换机
public class FanoutConfig {
/**
* 声明交换机
* @return Fanout类型交换机
*/
public FanoutExchange fanoutExchange(){ return new FanoutExchange("itcast.fanout"); }
// 队列1,绑定交换机
public Queue fanoutQueue1(){ return new Queue("fanout.queue1"); }
public Binding bindingQueue1(Queue fanoutQueue1, FanoutExchange fanoutExchange){
return BindingBuilder.bind(fanoutQueue1).to(fanoutExchange);
}
// 队列2,绑定交换机
public Queue fanoutQueue2(){ return new Queue("fanout.queue2"); }
public Binding bindingQueue2(Queue fanoutQueue2, FanoutExchange fanoutExchange){
return BindingBuilder.bind(fanoutQueue2).to(fanoutExchange);
}
} - 消息发送
1
2
3
4
5
6
7
8// 在publisher服务的SpringAmqpTest类中添加测试方法
public void testFanoutExchange() {
String exchangeName = "itcast.fanout";
String message = "hello, everyone!";
// 发送到交换机
rabbitTemplate.convertAndSend(exchangeName, "", message);
} - 消息接收
1
2
3
4
5
6
7
8
9// 在consumer服务的SpringRabbitListener中添加两个方法,作为消费者
public void listenFanoutQueue1(String msg) {
System.out.println("消费者1接收到Fanout消息:【" + msg + "】");
}
public void listenFanoutQueue2(String msg) {
System.out.println("消费者2接收到Fanout消息:【" + msg + "】");
}
5. Direct
在Fanout模式中,一条消息,会被所有订阅的队列都消费。但是,在某些场景下,我们希望不同的消息被不同的队列消费。这时就要用到Direct类型的Exchange。
在Direct模型下:
- 队列与交换机的绑定,不能是任意绑定了,而是要指定一个
BindingKey
(路由key) - 消息的发送方在 向 Exchange发送消息时,必须指定消息的
RoutingKey
。 - Exchange不再把消息交给每一个绑定的队列,而是根据消息的
RoutingKey
进行判断,只有队列的Bindingkey
与消息的Routingkey
完全一致,才会接收到消息 - 一个队列可以有多个BindingKey。如果多个队列具有相同的RoutingKey,则与Fanout功能类似(可以模拟广播)
- 基于注解声明队列和交换机
基于@Bean的方式声明队列和交换机比较麻烦,Spring还提供了基于注解方式来声明。
在consumer的SpringRabbitListener中添加两个消费者,同时基于注解@RabbitListener
来声明队列和交换机:1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18// 消费者1+队列+交换机+BindingKey
public void listenDirectQueue1(String msg){
System.out.println("消费者接收到direct.queue1的消息:【" + msg + "】");
}
// 消费者2+队列+交换机+BindingKey
public void listenDirectQueue2(String msg){
System.out.println("消费者接收到direct.queue2的消息:【" + msg + "】");
} - 消息发送
1
2
3
4
5
6
7
public void testSendDirectExchange() {
String exchangeName = "itcast.direct";
String message = "红色警报!日本乱排核废水,导致海洋生物变异,惊现哥斯拉!";
// 发送消息,携带 RoutingKey
rabbitTemplate.convertAndSend(exchangeName, "red", message);
}
6.Topic
Topic
类型的Exchange
与Direct
相比,都是可以根据RoutingKey
把消息路由到不同的队列。只不过Topic
类型Exchange
可以让队列在绑定Routing key
的时候使用通配符!Routingkey
一般都是有一个或多个单词组成,多个单词之间以”.”分割,例如: item.insert
通配符规则:#
:匹配一个或多个词;*
:匹配不多不少恰好1个词
举例:item.#
:能够匹配item.spu.insert
或者 item.spu
;item.*
:只能匹配item.spu
解释:
- Queue1:绑定的是
china.#
,因此凡是以china.
开头的routing key
都会被匹配到。包括china.news和china.weather - Queue2:绑定的是
#.news
,因此凡是以.news
结尾的routing key
都会被匹配。包括china.news和japan.news
- 消息发送
1
rabbitTemplate.convertAndSend(exchangeName, "china.news", message);
- 消息接收
1
2
3
4
5 - 总结
描述下Direct交换机与Topic交换机的差异?- Topic交换机接收的消息RoutingKey必须是多个单词,以
.
分割 - Topic交换机与队列绑定时的bindingKey可以指定通配符
#
:代表0个或多个词*
:代表1个词
- Topic交换机接收的消息RoutingKey必须是多个单词,以
7.消息转换器
之前说过,Spring会把你发送的消息序列化为字节发送给MQ,接收消息的时候,还会把字节反序列化为Java对象。
只不过,默认情况下Spring采用的序列化方式是JDK序列化。众所周知,JDK序列化存在下列问题:
- 数据体积过大
- 有安全漏洞
- 可读性差
显然,JDK序列化方式并不合适。我们希望消息体的体积更小、可读性更高,因此可以使用JSON方式来做序列化和反序列化。
在publisher和consumer两个服务中都引入依赖:
1 | <dependency> |
配置消息转换器。在启动类中添加一个Bean即可:
1 |
|